Military Wiki
Starstreak missile on display at the Africa Aerospace & Defence exposition, September 2006
Type Manportable/Vehicle mounted surface-to-air missile
Place of origin United Kingdom
Service history
In service 1997 - Present
Used by See Operators
Production history
Designed 1980s
Manufacturer Thales Air Defence
Produced November 1986
Number built 7,000
Variants See Variants
Specifications (Starstreak High Velocity Missile)
Weight 16.82 kg (37.1 lb)
Length 1.397 m (4 ft 7 in)
Diameter 13 cm (5.1 in)
Crew 1

Effective range 0.3–7 km (0.19–4.35 mi)
Warhead Three explosive sub-munitions ("darts")
Warhead weight 0.9 kg (2 lb)
Impact Delay

Engine First stage: Royal Ordnance 'Brambling' cast double-based propellant blip rocket motor.
Second stage: Royal Ordnance 'Titus' cast double-based propellant
Speed Mach 3.5 at second stage burnout
SACLOS system

Starstreak is a British short range Man-portable air-defense system (MANPADS) manufactured by Thales Air Defence (formerly Shorts Missile Systems), in Belfast. It is also known as Starstreak HVM (High Velocity Missile). After launch, the missile accelerates to approximately Mach 3.5, at which point it launches three laser beam riding submunitions. The use of three submunitions increases the likelihood of a successful hit on the target. Starstreak has been in service with the British Army since 1997.


Development on the missile began in the early 1980s after an evaluation of missile and gun options to increase air defence capabilities showed that a high velocity missile system would best meet the needs and could also replace existing shoulder launched missiles. A General Staff Requirement (GSR 3979) [1] was drawn up with the requirements of the system, specifying the requirement of three launch platforms for the missile:

  • A self-propelled launcher.[1]
  • A three round light weight launcher.[1]
  • A man portable launcher.[1]

In 1984, the British Ministry of Defence awarded development contracts to British Aerospace (BAe) and Shorts Missile Systems. The BAe missile was known as Thunderbolt. Shorts won the competition and were awarded the £356 million. Further development and a production contract materialized in November 1986, and the missile was officially accepted into service in September 1997. The missile is intended to replace the Javelin surface-to-air missile in British service.[1] The LML and shoulder-launched versions have been in use since 2000.[1]

In July 2001, Thales received a contract for a Successor Identification friend or foe system for Starstreak.[1]

In mid-2007, Thales UK in Northern Ireland revealed that it had developed Starstreak II, a much improved successor to the Starstreak missile. Some of the advantages included in this new missile are an improved range of 7 kilometres, an improved targeting system and the ability to operate it at much higher altitudes.[2]

In 2011, when it won a contract for the Lightweight Multirole Missile, Thales announced it agreed with the MOD to "re-role previously contracted budgets to facilitate the full-scale development, series production and introduction of the LMM." The contract affected is speculated to have been Starstreak.[3]


A Starstreak, just after being launched from an AN/TWQ-1 Avenger mobile, short-range air-defence platform

The Starstreak missile is transported in a sealed launch tube. This tube is attached to an aiming unit for firing. The operator tracks the target using the aiming unit's optically stabilized sight. The process of tracking the target allows the aiming unit to compute the right trajectory to bring the missile together with the target. The operator can indicate wind direction to the unit and, in the case of a long range target, provide superelevation. When the initial tracking is complete, the operator fires the missile by pressing a button.[1]

The missile then fires the first stage rocket motor, which launches the missile from the tube - but burns out before leaving the tube to protect the operator. When the missile is a safe distance from the operator, the second stage fires, which rapidly accelerates the missile to burn out velocity of about Mach 3.5 four hundred meters away from the operator. As the second stage burns out, the three dart sub-munitions are released. The darts are each 396 millimetres (15.6 in) long with a diameter of 22 millimetres (0.87 in) and weigh about 900 grams (32 oz). Each dart consists of a rotating fore-body with two canard fins attached to a non-rotating rear assembly which has four fins. The rear assembly also houses the electronics that guide the missile. The dart housing is made from a tungsten alloy, and contains approximately 450 g (16 oz) of explosive with a delayed action impact activated fuze.[1]

The missiles are guided by two laser beams projected into a two dimensional matrix by the aiming unit. The laser is modulated according to its position in the projected matrix, this modulation is detected by each sub-munition and allows it to determine any steering correction. The sub-munitions steer by briefly decelerating the rotating fore-body with a clutch. The front wings then steer the missile in the appropriate direction. The three sub-munitions fly in a formation about 1.5 meters in radius, and have enough kinetic energy to manoeuvre to meet a target evading at 9 g at 7,000 meters.[1] On impact with the target, a delayed action fuze is triggered. This gives time for the projectile to penetrate the target before the explosive warhead detonates. The tungsten housing is designed to fragment and produce maximum damage inside the target.[1]

A demonstration was conducted in September 1999 that showed the missile being used against an FV432 armoured personnel carrier, showing the missile's effectiveness as a surface-to-surface weapon.[1] Each sub-munition dart travelling at 1,250 meters per second (2,800 mph) has comparable kinetic energy to a shell from a Bofors 40 mm gun and probably has sufficient energy to penetrate the front armour of an infantry fighting vehicle. However, it lacks the armour penetration capabilities of a purpose-built anti-tank guided missile or a dual purpose missile such as Air Defence Anti-Tank System.

In 2012, the Ministry of Defence announced that it would be placing a Starstreak detachment on top of a block of flats in London in preparation for the 2012 London Olympics. The Ministry claimed that the area was the only suitable location for an air defence detachment of the type. Some residents were upset and uncertain of the necessity of the detachment.[4][5] In 2013, the British MOD ordered 200 more Starstreak missiles.[6]


  • ATASK (Air To Air Starstreak): Fired from a helicopter. This was developed in combination with McDonnell-Douglas and Lockheed-Martin electronics between 1995 and 1998 specifically for use with the AH-64 Apache. It has yet to enter service.[1]
  • LML: Fired from a Lightweight Multiple Launcher (LML) that holds three missiles ready for firing and can be used as either a stationary launch unit or mounted on a light vehicle such as a Land Rover or HMMWV (Humvee). The LML originated in a proposal under the Army Suggestions Scheme for the Javelin system.[1]
  • Seastreak: Two versions of a naval mounting have been demonstrated—a one-man mount similar to the LML but carrying a total of six missiles, and a close in weapon system mounting holding 24 missiles.
  • SP HVM: Carried on an Alvis Stormer AFV with a roof mounted eight round launcher with internal stowage for a further 12 missiles.[1]
  • Starstreak Avenger: Built to a U.S. Army requirement in the early 1990s, this system integrated the Starstreak missile on the Boeing Avenger vehicle, replacing 1 pod of Stinger missiles with 1 pod of 4 Starstreak and modifying the fire control system accordingly.
  • Starstreak Mark II: Upgrade to the Starstreak.
  • THOR/Multi Mission System (MMS): A four missile turret mounted on a Pinzgauer (6x6) cross-country chassis,[7] unveiled by Thales UK in 2005.[8]


The Starstreak has never been used in combat, so its operational effectiveness is unknown.


Starstreak has a number of advantages over infrared guided, radar guided, and radio command MCLOS/SACLOS (Blowpipe or Javelin) missiles:

  • It cannot be jammed by infrared countermeasures or radar/radio countermeasures.[9]
  • It cannot be suppressed with anti-radar missiles.[9]
  • Its high speed makes it more likely to be able to intercept a fast moving aircraft.
  • Three submunitions increase the size of the lethal area, increasing the probability that the target will be hit by at least one submunition. This is partially reduced by the missile's attack pattern (see disadvantages).
  • Its high speed reduces the amount of time for effective usage of any potential countermeasure, such as the beam manoeuvring or illuminating the guidance laser source with a dazzling battlefield laser.


  • The major disadvantage is the submunitions, having no proximity fuze, must collide with the target in order to harm it.
  • The guidance laser may be detected after the missile is fired, if the target aircraft is equipped with a suitable passive laser warning system. In contrast, to detect a passively guided Infrared homing missile requires MAWS detectors with significant disadvantages: radar-based closure-detecting style MAWS radiate an easily-detectable signal that reveals the aircraft and may be used as an auxiliary homing signal by AA missiles, and Infrared launch signature detector-based MAWS tend to be subject to a high false alarm rate, which reduces attention paid them by the pilot.
  • Battlefield obscurants, such as smoke, can degrade the ability of the missile operator to see the target, and could potentially interfere with the guidance laser.
  • The training level of the operator is critical since, unlike infrared guided missiles, the operator has to track the target exactly with the sighting unit aimpoint (SACLOS). If the aircraft detects the targeting laser, it has the whole period of the missile flight time to engage in avoidance manoeuvres, which adds additional challenge to the missile operator's target-tracking task.


A Starstreak used in training on Dartmoor, England

 United Kingdom
  • SP HVM - 150 systems (approx)
 South Africa
  • LML - 8 systems

See also



External links

This page uses Creative Commons Licensed content from Wikipedia (view authors).