Military Wiki
RB.41 Nene
Rolls-Royce Nene on display RAAF Base Pearce, Western Australia - note the wire mesh grille around the air intake to prevent Foreign object damage

The Rolls-Royce RB.41 Nene was a 1940s British centrifugal compressor turbojet engine. The Nene was essentially an enlarged version of the Rolls-Royce Derwent with the minimal changes needed to deliver 5,000 lbf, making it the most powerful engine of its era. The Nene was Rolls-Royce's third jet engine to enter production, designed and built in an astonishingly short five-month period in 1944, first running on 27 October 1944.[1] It was named after the River Nene in keeping with the company's tradition of naming its jet engines after rivers.

The design saw relatively little use in British aircraft designs, being passed over in favour of the axial-flow Avon that followed it. Its only widespread use in Great Britain was in the Hawker Sea Hawk and the Supermarine Attacker. In the US it was built under license as the Pratt & Whitney J42, and it powered the Grumman F9F Panther. Its most widespread use was in the form of the Klimov RD-45, which powered the famous Mikoyan-Gurevich MiG-15.

Design and development

An FMA IAe 33 Pulqui II without tail section, showing its Rolls-Royce Nene II turbojet

Although based on the "straight-through" version of the basic Whittle-style layout,[Clarification needed] the Nene used a double-sided centrifugal compressor for improved pressure ratio and thus higher thrust. It was during the design of the Nene that Rolls decided to give their engines numbers as well as names, with the Welland and Derwent keeping their original Rover models, B/23 and B/26. It was later decided that these model numbers looked too much like those for bombers, and "R" was added to the front, the "R" signifying "Rolls" and the original Rover "B" signifying Barnoldswick.[citation needed] This RB designation scheme continues to this day. Early airborne tests of the Nene were undertaken in an Avro Lancastrian operated by Rolls-Royce from their Hucknall airfield. The two outboard Rolls-Royce Merlins were replaced by the jet engine. The Nene's first flight however was in a modified Lockheed XP-80 Shooting Star.[2]

Service use

The Rolls-Royce Avro Lancastrian Nene test bed in 1948 fitted with the jet engines in the outboard position

The Nene doubled the thrust of the earlier generation engines, with early versions providing about 5,000 lbf (22.2 kN), but remained generally similar in most ways. This should have suggested that it would be widely used in various designs, but the Gloster Meteor proved so successful with its Derwents that the Air Ministry felt there was no pressing need to improve upon it. Instead a series of much more capable designs using the Rolls-Royce Avon were studied, and the Nene generally languished.

The Nene was used to power the first civil jet aircraft,[3] a modified Vickers Viking, which flew first on 6 April 1948.[3]

Pratt and Whitney was given a licence to produce the Nene as the Pratt & Whitney J42, and it powered the Grumman F9F Panther.[4] Twenty-five were given to the Soviet Union as a gesture of goodwill - with reservation to not use for military purposes - with the agreement of Stafford Cripps. The Soviets reneged on the deal, and reverse engineered the Nene to develop the Klimov RD-45, and a larger version, the Klimov VK-1, which soon appeared in various Soviet fighters including Mikoyan-Gurevich MiG-15. It was briefly made under licence in Australia for use in the RAAF de Havilland Vampire fighters. It was also built by Orenda in Canada for use in 656 Canadair CT-133 Silver Star aircraft.


Pratt & Whitney J42

Engines on display

A sectioned Rolls-Royce Nene is on display at the Fleet Air Arm Museum, RNAS Yeovilton.

There is a cutaway Nene II on display at the New England Air Museum

A sectioned Hispano-Suiza Nene is on display at the Ailes Anciennes Toulouse Museum in France.

Specifications (Nene)

Cutaway view showing the combustion chambers and compressor

Data from [5]

General characteristics
  • Type: Centrifugal compressor turbojet
  • Length: 96.8 in (2,458.7 mm)
  • Diameter: 49.5 in (1,257.3 mm)
  • Dry weight: 1,600 lb (725.7 kg)
  • Compressor: 1-stage double-sided centrifugal compressor
  • Combustors: 9 x can combustion chambers
  • Turbine: Single-stage axial
  • Fuel type: Kerosene (R.D.E.F./F/KER)
  • Oil system: pressure feed, dry sump with scavenge, cooling and filtration, oil grade 70 S.U. secs (13 cs) (D.T.D 44D) at 38 °C (100 °F)
  • Maximum thrust: 5,000 lbf (22.24 kN) at 12,300 rpm at sea level for take=off
  • Specific fuel consumption: 1.06 lb/lbf/hr (108.04 kg/kN/hr)
  • Thrust-to-weight ratio: 3.226 lbf/lb (0.0315 kN/kg)
  • Military, static: 5,000 lbf (22.24 kN) at 12,300 rpm at sea level
  • Max. cruising, static: 4,360 lbf (19.39 kN) at 12,000 rpm at sea level
  • Cruising, static: 3,620 lbf (16.10 kN) at 11,500 rpm at sea level
  • Idling, static: 120 lbf (0.53 kN) at 2,500 rpm at sea level

See also


  1. Bingham 2004, pages 96-100
  3. 3.0 3.1
  4. Connors, p.202
  5. Wilkinson, Paul H. (1946). Aircraft Engines of the world 1946. London: Sir Isaac Pitman & Sons. pp. 298–299. 
  • Wilkinson, Paul H. (1946). Aircraft Engines of the world 1946. London: Sir Isaac Pitman & Sons. pp. 298–299. 
  • Bingham, Victor (2004). Supermarine Fighter Aircraft. The Crowood Press. ISBN 1-86126-649-9. 
  • Bridgman, L, (ed.) (1998) Jane's fighting aircraft of World War II. Crescent. ISBN 0-517-67964-7
  • Connors, Jack (2010). The Engines of Pratt & Whitney: A Technical History. Reston. Virginia: American Institute of Aeronautics and Astronautics. ISBN 978-1-60086-711-8. 
  • Kay, Anthony L. (2007). Turbojet History and Development 1930-1960. 1 (1st ed.). Ramsbury: The Crowood Press. ISBN 978-1-86126-912-6. 

External links

This page uses Creative Commons Licensed content from Wikipedia (view authors).