The Relative effectiveness factor, or R.E. factor, relates an explosive's demolition power to that of TNT, in units of the TNT equivalent/kg (TNTe/kg). The R.E. factor is the amount of TNT to which 1 kg of an explosive is equivalent; the higher the R.E., the more powerful the explosive. This enables engineers to use different explosives when calculating blasting equations designed specifically for TNT. For example, if a timber cutting charge calls for 1 kg of TNT, it would take 1.0/2.38 (or 0.42) kg of ONC to create the same charge. Using PETN, engineers would need 1.0/1.66 (or 0.60) kg to replicate the effects of 1 kg of TNT. With ANFO or AN they would require 1.0/0.74 (or 1.35) kg or 1.0/0.42 (or 2.38) kg, respectively.
R.E. factor examples[]
The bigger the R.E. number, the more powerful the explosive.
Explosive, Grade | Density (g/ml) |
Detonation Vel. (m/s) |
R.E. |
---|---|---|---|
Ammonium nitrate (AN + <0.5% H2O) | 1.12 | 2550 | 0.42[1] |
Black powder (75% KNO3 + 19% C + 6% S) | 1.65 | 600 | 0.55 |
Tanerit Simply® (93% granulated AN + 6% Red P + 1% C) | 0.90 | 2750 | 0.55 |
Hexamine dinitrate (HDN) | 1.30 | 5070 | 0.60 |
Dinitrobenzene (DNB) | 1.50 | 6025 | 0.60 |
HMTD (Hexamine peroxide) | 0.88 | 4520 | 0.74 |
ANFO (94% AN + 6% fuel oil) | 0.92 | 5270 | 0.74 |
Copperputty (90% Potassium chlorate + 10% Kerosene) | 1.3 | 3300 | 0.77 |
TATP (Acetone peroxide) | 1.18 | 5300 | 0.80 |
Tovex® Extra (AN water gel) commercial product | 1.33 | 5690 | 0.80 |
Hydromite® 600 (AN water emulsion) commercial product | 1.24 | 5550 | 0.80 |
ANNMAL (67% AN + 25% NM + 5% Al + 3% C) | 1.15 | 5360 | 0.87 |
Amatol (50% TNT + 50% AN) | 1.50 | 6290 | 0.91 |
Nitroguanidine | 1.32 | 6750 | 0.95 |
Trinitrotoluene (TNT) ***High Energetic Explosives >4 MJ/kg*** | 1.60 | 6900 | 1.00 |
Hexanitrostilbene (HNS) | 1.70 | 7080 | 1.05 |
Nitrourea | 1.54 | 6860 | 1.05 |
Amatol (80% TNT + 20% AN) | 1.55 | 6790 | 1.10 |
Nitrocellulose (13.5% N, NC) | 1.60 | 6400 | 1.10 |
Nitromethane (NM) | 1.13 | 6360 | 1.10 |
Diethylene glycol dinitrate (DEGDN) | 1.38 | 6610 | 1.17 |
Tritonal (80% TNT + 20% Aluminium)* | 1.70 | 6750 | 1.00 |
Triaminotrinitrobenzene (TATB) | 1.80 | 7550 | 1.17 |
Picric acid (TNP) | 1.71 | 7350 | 1.20 |
Trinitrobenzene (TNB) | 1.60 | 7300 | 1.20 |
Tetrytol (70% Tetryl + 30% TNT) | 1.60 | 7370 | 1.20 |
Nobel's Dynamite (75% NG + 23% Diatomite) | 1.48 | 7200 | 1.25 |
Tetryl | 1.71 | 7770 | 1.25 |
C-3 (78% RDX) | 1.60 | 7630 | 1.33 |
C-4 (91% RDX) | 1.59 | 8040 | 1.33 |
Pentolite (56% PETN + 44% TNT) | 1.66 | 7520 | 1.33 |
Semtex 1A (76% PETN + 6% RDX) | 1.55 | 7670 | 1.35 |
Composition B (63% RDX + 36% TNT) | 1.72 | 7840 | 1.18 |
Hydrazine mononitrate | 1.59 | 8500 | 1.42 |
Mixture: 24% Nitrobenzene + 76% TNM | 1.48 | 8060 | 1.50 |
RISAL P (51%IPN + 28%RDX + 14%Al + 4%Mg + 0.7%Zr + 2%NC)* | 1.38 | 5950 | 1.50 |
Nitroglycerin (NG) | 1.59 | 8100 | 1.54 |
Octol (80% HMX + 19% TNT + 1% DNT) | 1.83 | 8690 | 1.54 |
Gelatine (92% NG + 7% Nitrocellulose) | 1.60 | 7970 | 1.60 |
Erythritol tetranitrate (ETN) | 1.60 | 8100 | 1.60 |
NTO (Nitrotriazolon) | 1.87 | 8120 | 1.60 |
Hexogen (RDX) | 1.78 | 8700 | 1.60 |
Penthrite (PETN) | 1.71 | 8400 | 1.66 |
Ethylene glycol dinitrate (EGDN) | 1.49 | 8300 | 1.66 |
MEDINA (Methylene dinitroamine) | 1.65 | 8700 | 1.70 |
TNAZ (Trinitroazetidine) | 1.88 | 8840 | 1.70 |
DADNE (1,1-Diamino-2,2-dinitroethene) | 1.86 | 8870 | N/A |
Octogen (HMX grade B) | 1.86 | 9100 | 1.70 |
Hexanitrobenzene (HNB) | 1.97 | 9340 | 1.80 |
HNIW (CL-20) | 1.97 | 9500 | 1.90 |
DDF (4,4'-Dinitro-3,3'-diazenofuroxan) | 1.98 | 10,000 | 1.95 |
Heptanitrocubane (HNC) | 1.92 | 9200 | N/A |
Octanitrocubane (ONC) | 1.95 | 10,600 | 2.38 |
'*' - TBX (Thermobaric Explosives) or EBX (Enhanced Blast Explosives), in small, closed area it may have over double the power of destruction.
Weapon | Total yield (tons of TNT) |
Weight (kg) |
R.E. ~ |
---|---|---|---|
Davy Crockett (nuclear device) | 22 | 23 | 1,000 |
Fat Man (first tested A-bomb) | 20k | 4600 | 4,500 |
Classic (one-stage) fission A-bomb | 22k | 420 | 50,000 |
Russian suitcase nuke (in service of GRU) | 2.5k | 31 | 80,000 |
Typical (two-stage) nuclear bomb | 0.5M – 1M | 650–1120 | 900,000 |
W88 modern thermonuclear warhead (MIRV) | 470k | 355 | 1,300,000 |
B53 nuclear bomb (two-stage) | 9M | 4050 | 2,200,000 |
B41 nuclear bomb (three-stage) | 25M | 4850 | 5,100,000 |
Tsar nuclear bomb (two-stage) | 56M | 26,500 | 2,100,000 |
Timothy McVeigh bomb (ANFO base on racing fuel) | 1.8 | 2,300 | 0.78 |
BLU-82 (Daisy Cutter) | 7.5 | 6,800 | 1.10 |
MOAB (non-nuclear bomb) | 11 | 9,800 | 1.13 |
FOAB (advanced thermobaric bomb) | 44 | 9,100 | 4.83 |
See also[]
- Brisance
- TNT Explosive character
- Dynamite (Difference from TNT)
References[]
- Cooper, Paul W. (1996). "Explosives Engineering". New York: Wiley-VCH. ISBN 0-471-18636-8.
- HQ Department of the Army (2004). "Field Manual 5-25: Explosives and Demolitions". Washington, D.C.: Pentagon Publishing. pp. 83–84. ISBN 0-9759009-5-1.
- "Explosives - Compositions". Alexandria, VA: GlobalSecurity.org. http://www.globalsecurity.org/military/systems/munitions/explosives-compositions.htm. Retrieved September 1, 2010.
- Urbański, Tadeusz (1985). "Chemistry and Technology of Explosives". Oxford: Pergamon.
- Jörg Mathieu and Hans Stucki (2004). "Military High Explosives". Schweizerische Chemische Gesellschaft. pp. 383–389.
- "3. Thermobaric Explosives, Advanced Energetic Materials, 2004.". THE NATIONAL ACADEMIES PRESS, nap.edu. http://www.nap.edu/openbook/0309091608/html/16.html. Retrieved September, 2004.
The original article can be found at Relative effectiveness factor and the edit history here.
- ↑ US Army Field Manual 5-250: Explosives and Demolition, page 1-2.